If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=260
We move all terms to the left:
2y^2-(260)=0
a = 2; b = 0; c = -260;
Δ = b2-4ac
Δ = 02-4·2·(-260)
Δ = 2080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2080}=\sqrt{16*130}=\sqrt{16}*\sqrt{130}=4\sqrt{130}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{130}}{2*2}=\frac{0-4\sqrt{130}}{4} =-\frac{4\sqrt{130}}{4} =-\sqrt{130} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{130}}{2*2}=\frac{0+4\sqrt{130}}{4} =\frac{4\sqrt{130}}{4} =\sqrt{130} $
| (W-1)2=2w2-11w+19 | | (2x-1)-5=-6 | | 0=-64x^2-96x+640 | | X+(x-4)=190 | | 5−3g=14 | | 7(2x-1)=18-19x | | 7(2x-1)=18x-19x | | x-2/x+4-1-2x/x-4=2+3x2 | | 7(2x+1)=18-19x | | (4x^2)-2x+10=0 | | 0=(4x^2)-2x+10 | | 9x−4=7x+6 | | -u+233=107 | | 41-u=163 | | y2-10y-3=0 | | 2x−3=12−x | | 3x+2=10−x | | n^2+9n-552=0 | | 2x/11=31 | | 4=8-7d | | 40=84-7d | | 13+5=8x-15 | | 41=6-7w | | 2y2-3y-5=0 | | 2n^2-20n-30=12 | | 11x3x=(33x2)+(2x3x)+(2x11x) | | 49v=828 | | x+.6=4 | | .5x+9=-4 | | Y-12x=19 | | 2x+3×=60 | | x+7√x+10=0 |